Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Chem Commun (Camb) ; 58(11): 1804-1807, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1639537

RESUMEN

We present the finding of a dimeric ACE2 peptide mimetic designed through side chain cross-linking and covalent dimerization. It has a binding affinity of 16 nM for the SARS-CoV-2 spike RBD, and effectively inhibits the SARS-CoV-2 pseudovirus in Huh7-hACE2 cells with an IC50 of 190 nM and neutralizes the authentic SARS-CoV-2 in Caco2 cells with an IC50 of 2.4 µM. Our study should provide a new insight for the optimization of peptide-based anti-SARS-CoV-2 inhibitors.


Asunto(s)
Antivirales/farmacología , Fragmentos de Péptidos/farmacología , Peptidomiméticos/farmacología , SARS-CoV-2/efectos de los fármacos , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Antivirales/síntesis química , Antivirales/metabolismo , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/metabolismo , Peptidomiméticos/síntesis química , Peptidomiméticos/metabolismo , Unión Proteica , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Bioorg Med Chem Lett ; 50: 128333, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1363893

RESUMEN

Specific anti-coronaviral drugs complementing available vaccines are urgently needed to fight the COVID-19 pandemic. Given its high conservation across the betacoronavirus genus and dissimilarity to human proteases, the SARS-CoV-2 main protease (Mpro) is an attractive drug target. SARS-CoV-2 Mpro inhibitors have been developed at unprecedented speed, most of them being substrate-derived peptidomimetics with cysteine-modifying warheads. In this study, Mpro has proven resistant towards the identification of high-affinity short substrate-derived peptides and peptidomimetics without warheads. 20 cyclic and linear substrate analogues bearing natural and unnatural residues, which were predicted by computational modelling to bind with high affinity and designed to establish structure-activity relationships, displayed no inhibitory activity at concentrations as high as 100 µM. Only a long linear peptide covering residues P6 to P5' displayed moderate inhibition (Ki = 57 µM). Our detailed findings will inform current and future drug discovery campaigns targeting Mpro.


Asunto(s)
COVID-19/patología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Cisteína/química , Cisteína/metabolismo , Humanos , Lactamas/química , Lactamas/metabolismo , Leucina/química , Leucina/metabolismo , Nitrilos/química , Nitrilos/metabolismo , Péptidos/química , Péptidos/metabolismo , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Prolina/química , Prolina/metabolismo , Inhibidores de Proteasas/metabolismo , SARS-CoV-2/aislamiento & purificación , Relación Estructura-Actividad , Especificidad por Sustrato
3.
Bioorg Med Chem Lett ; 48: 128263, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1309173

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 has created an unprecedented global health emergency. As of July 2021, only three antiviral therapies have been approved by the FDA for treating infected patients, highlighting the urgent need for more antiviral drugs. The SARS-CoV-2 3CL protease (3CLpro) is deemed an attractive drug target due to its essential role in viral polyprotein processing and pathogenesis. Indeed, a number of peptidomimetic 3CLpro inhibitors armed with electrophilic warheads have been reported by various research groups that can potentially be developed for treating COVID-19. However, it is currently impossible to compare their relative potencies due to the different assays employed. To solve this, we conducted a head-to-head comparison of fifteen reported peptidomimetic inhibitors in a standard FRET-based SARS-CoV-2 3CLpro inhibition assay to compare and identify potent inhibitors for development. Inhibitor design and the suitability of various warheads are also discussed.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/química , Peptidomiméticos/química , SARS-CoV-2/enzimología , Antivirales/metabolismo , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Pruebas de Enzimas , Transferencia Resonante de Energía de Fluorescencia , Concentración 50 Inhibidora , Peptidomiméticos/metabolismo , Unión Proteica
4.
Phys Chem Chem Phys ; 23(11): 6746-6757, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1132112

RESUMEN

COVID-19, the disease caused by the newly discovered coronavirus-SARS-CoV-2, has created a global health, social, and economic crisis. As of mid-January 2021, there are over 90 million confirmed cases and more than 2 million reported deaths due to COVID-19. Currently, there are very limited therapeutics for the treatment or prevention of COVID-19. For this reason, it is important to find drug targets that will lead to the development of safe and effective therapeutics against the disease. The main protease (Mpro) of the virus is an attractive target for the development of effective antiviral therapeutics because it is required for proteolytic cleavage of viral polyproteins. Furthermore, the Mpro has no human homologues, so drugs designed to bind to this target directly have less risk for off-target effects. Recently, several high-resolution crystallographic structures of the Mpro in complex with inhibitors have been determined-to guide drug development and to spur efforts in structure-based drug design. One of the primary objectives of modern structure-based drug design is the accurate prediction of receptor-ligand binding affinities for rational drug design and discovery. Here, we perform rigorous alchemical absolute binding free energy calculations and QM/MM calculations to give insight into the total binding energy of two recently crystallized inhibitors of SARS-CoV-2 Mpro, namely, N3 and α-ketoamide 13b. The total binding energy consists of both covalent and non-covalent binding components since both compounds are covalent inhibitors of the Mpro. Our results indicate that the covalent and non-covalent binding free energy contributions of both inhibitors to the Mpro target differ significantly. The N3 inhibitor has more favourable non-covalent interactions, particularly hydrogen bonding, in the binding site of the Mpro than the α-ketoamide inhibitor. Also, the Gibbs energy of reaction for the Mpro-N3 covalent adduct is greater than the Gibbs reaction energy for the Mpro-α-ketoamide covalent adduct. These differences in the covalent and non-covalent binding free energy contributions for both inhibitors could be a plausible explanation for their in vitro differences in antiviral activity. Our findings are consistent with the reversible and irreversible character of both inhibitors as reported by experiment and highlight the importance of both covalent and non-covalent binding free energy contributions to the absolute binding affinity of a covalent inhibitor towards its target. This information could prove useful in the rational design, discovery, and evaluation of potent SARS-CoV-2 Mpro inhibitors for targeted antiviral therapy.


Asunto(s)
Peptidomiméticos/química , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Proteínas de la Matriz Viral/antagonistas & inhibidores , Amidas/química , Amidas/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Diseño de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Simulación de Dinámica Molecular , Peptidomiméticos/metabolismo , Inhibidores de Proteasas/metabolismo , Teoría Cuántica , SARS-CoV-2/aislamiento & purificación , Termodinámica , Proteínas de la Matriz Viral/metabolismo
5.
J Med Chem ; 63(9): 4562-4578, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: covidwho-613484

RESUMEN

The main protease of coronaviruses and the 3C protease of enteroviruses share a similar active-site architecture and a unique requirement for glutamine in the P1 position of the substrate. Because of their unique specificity and essential role in viral polyprotein processing, these proteases are suitable targets for the development of antiviral drugs. In order to obtain near-equipotent, broad-spectrum antivirals against alphacoronaviruses, betacoronaviruses, and enteroviruses, we pursued a structure-based design of peptidomimetic α-ketoamides as inhibitors of main and 3C proteases. Six crystal structures of protease-inhibitor complexes were determined as part of this study. Compounds synthesized were tested against the recombinant proteases as well as in viral replicons and virus-infected cell cultures; most of them were not cell-toxic. Optimization of the P2 substituent of the α-ketoamides proved crucial for achieving near-equipotency against the three virus genera. The best near-equipotent inhibitors, 11u (P2 = cyclopentylmethyl) and 11r (P2 = cyclohexylmethyl), display low-micromolar EC50 values against enteroviruses, alphacoronaviruses, and betacoronaviruses in cell cultures. In Huh7 cells, 11r exhibits three-digit picomolar activity against the Middle East Respiratory Syndrome coronavirus.


Asunto(s)
Antivirales/farmacología , Coronavirus/efectos de los fármacos , Enterovirus/efectos de los fármacos , Lactamas/farmacología , Peptidomiméticos/farmacología , Replicación Viral/efectos de los fármacos , Proteasas Virales 3C , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Sitios de Unión , Línea Celular Tumoral , Chlorocebus aethiops , Coronavirus/enzimología , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Diseño de Fármacos , Enterovirus/enzimología , Humanos , Lactamas/síntesis química , Lactamas/metabolismo , Peptidomiméticos/síntesis química , Peptidomiméticos/metabolismo , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Unión Proteica , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Proteínas Virales/metabolismo
6.
Comput Biol Med ; 119: 103670, 2020 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1938

RESUMEN

This paper concerns study of the genome of the Wuhan Seafood Market isolate believed to represent the causative agent of the disease COVID-19. This is to find a short section or sections of viral protein sequence suitable for preliminary design proposal for a peptide synthetic vaccine and a peptidomimetic therapeutic, and to explore some design possibilities. The project was originally directed towards a use case for the Q-UEL language and its implementation in a knowledge management and automated inference system for medicine called the BioIngine, but focus here remains mostly on the virus itself. However, using Q-UEL systems to access relevant and emerging literature, and to interact with standard publically available bioinformatics tools on the Internet, did help quickly identify sequences of amino acids that are well conserved across many coronaviruses including 2019-nCoV. KRSFIEDLLFNKV was found to be particularly well conserved in this study and corresponds to the region around one of the known cleavage sites of the SARS virus that are believed to be required for virus activation for cell entry. This sequence motif and surrounding variations formed the basis for proposing a specific synthetic vaccine epitope and peptidomimetic agent. The work can, nonetheless, be described in traditional bioinformatics terms, and readily reproduced by others, albeit with the caveat that new data and research into 2019-nCoV is emerging and evolving at an explosive pace. Preliminary studies using molecular modeling and docking, and in that context the potential value of certain known herbal extracts, are also described.


Asunto(s)
Betacoronavirus/inmunología , Betacoronavirus/fisiología , Biología Computacional , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Peptidomiméticos/química , Neumonía Viral/prevención & control , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Vacunas Virales , Secuencia de Aminoácidos , Animales , Betacoronavirus/química , Betacoronavirus/efectos de los fármacos , COVID-19 , Vacunas contra la COVID-19 , Simulación por Computador , Coronavirus/química , Infecciones por Coronavirus/tratamiento farmacológico , Diseño de Fármacos , Epítopos , Genoma Viral , Humanos , Modelos Moleculares , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacología , Neumonía Viral/tratamiento farmacológico , Lenguajes de Programación , Conformación Proteica , Estructura Secundaria de Proteína , SARS-CoV-2 , Homología de Secuencia de Aminoácido , Programas Informáticos , Glicoproteína de la Espiga del Coronavirus/química , Vacunas Sintéticas , Vacunas Virales/química , Internalización del Virus , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA